Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Bull Math Biol ; 84(9): 90, 2022 07 20.
Article in English | MEDLINE | ID: covidwho-1942799

ABSTRACT

Understanding the joint impact of vaccination and non-pharmaceutical interventions on COVID-19 development is important for making public health decisions that control the pandemic. Recently, we created a method in forecasting the daily number of confirmed cases of infectious diseases by combining a mechanistic ordinary differential equation (ODE) model for infectious classes and a generalized boosting machine learning model (GBM) for predicting how public health policies and mobility data affect the transmission rate in the ODE model (Wang et al. in Bull Math Biol 84:57, 2022). In this paper, we extend the method to the post-vaccination period, accordingly obtain a retrospective forecast of COVID-19 daily confirmed cases in the US, and identify the relative influence of the policies used as the predictor variables. In particular, our ODE model contains both partially and fully vaccinated compartments and accounts for the breakthrough cases, that is, vaccinated individuals can still get infected. Our results indicate that the inclusion of data on non-pharmaceutical interventions can significantly improve the accuracy of the predictions. With the use of policy data, the model predicts the number of daily infected cases up to 35 days in the future, with an average mean absolute percentage error of [Formula: see text], which is further improved to [Formula: see text] if combined with human mobility data. Moreover, the most influential predictor variables are the policies of restrictions on gatherings, testing and school closing. The modeling approach used in this work can help policymakers design control measures as variant strains threaten public health in the future.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Mathematical Concepts , Models, Biological , Public Policy , Retrospective Studies , Vaccination
2.
Bull Math Biol ; 84(5): 57, 2022 04 08.
Article in English | MEDLINE | ID: covidwho-1782924

ABSTRACT

Accurate prediction of the number of daily or weekly confirmed cases of COVID-19 is critical to the control of the pandemic. Existing mechanistic models nicely capture the disease dynamics. However, to forecast the future, they require the transmission rate to be known, limiting their prediction power. Typically, a hypothesis is made on the form of the transmission rate with respect to time. Yet the real form is too complex to be mechanistically modeled due to the unknown dynamics of many influential factors. We tackle this problem by using a hypothesis-free machine-learning algorithm to estimate the transmission rate from data on non-pharmaceutical policies, and in turn forecast the confirmed cases using a mechanistic disease model. More specifically, we build a hybrid model consisting of a mechanistic ordinary differential equation (ODE) model and a gradient boosting model (GBM). To calibrate the parameters, we develop an "inverse method" that obtains the transmission rate inversely from the other variables in the ODE model and then feed it into the GBM to connect with the policy data. The resulting model forecasted the number of daily confirmed cases up to 35 days in the future in the USA with an averaged mean absolute percentage error of 27%. It can identify the most informative predictive variables, which can be helpful in designing improved forecasters as well as informing policymakers.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Machine Learning , Mathematical Concepts , Models, Biological , Pandemics/prevention & control
3.
Data Brief ; 38: 107360, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1531175

ABSTRACT

This dataset provides information related to the outbreak of COVID-19 disease in the United States, including data from each of 3142 US counties from the beginning of the outbreak (January 2020) until June 2021. This data is collected from many public online databases and includes the daily number of COVID-19 confirmed cases and deaths, as well as 46 features that may be relevant to the pandemic dynamics: demographic, geographic, climatic, traffic, public-health, social-distancing-policy adherence, and political characteristics of each county. We anticipate many researchers will use this dataset to train models that can predict the spread of COVID-19 and to identify the key driving factors.

4.
Sci Rep ; 11(1): 13822, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1297313

ABSTRACT

The need for improved models that can accurately predict COVID-19 dynamics is vital to managing the pandemic and its consequences. We use machine learning techniques to design an adaptive learner that, based on epidemiological data available at any given time, produces a model that accurately forecasts the number of reported COVID-19 deaths and cases in the United States, up to 10 weeks into the future with a mean absolute percentage error of 9%. In addition to being the most accurate long-range COVID predictor so far developed, it captures the observed periodicity in daily reported numbers. Its effectiveness is based on three design features: (1) producing different model parameters to predict the number of COVID deaths (and cases) from each time and for a given number of weeks into the future, (2) systematically searching over the available covariates and their historical values to find an effective combination, and (3) training the model using "last-fold partitioning", where each proposed model is validated on only the last instance of the training dataset, rather than being cross-validated. Assessments against many other published COVID predictors show that this predictor is 19-48% more accurate.


Subject(s)
COVID-19/mortality , Communicable Diseases/mortality , Forecasting , SARS-CoV-2/pathogenicity , Humans , Machine Learning , Models, Statistical , United States
SELECTION OF CITATIONS
SEARCH DETAIL